
Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 791051, 16 pages
http://dx.doi.org/10.1155/2013/791051

Research Article
Streaming Support for Data Intensive
Cloud-Based Sequence Analysis

Shadi A. Issa,1 Romeo Kienzler,2 Mohamed El-Kalioby,1 Peter J. Tonellato,3

Dennis Wall,3 Rémy Bruggmann,4 and Mohamed Abouelhoda1,5

1 Center for Informatics Sciences, Nile University, Giza, Egypt
2 IBM Innovation Center, Zurich, Switzerland
3 Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
4Department of Biology, University of Bern, Bern, Switzerland
5 Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt

Correspondence should be addressed to Rémy Bruggmann; remy.bruggmann@biology.unibe.ch and
Mohamed Abouelhoda; mabouelhoda@yahoo.com

Received 10 September 2012; Revised 26 December 2012; Accepted 17 February 2013

Academic Editor: Ming Ouyang

Copyright © 2013 Shadi A. Issa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation
sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited
infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a
significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In
this paper, we provide a streaming-based scheme to overcome this problem,where theNGSdata is processedwhile being transferred
to the cloud.Our scheme targets thewide class ofNGSdata analysis tasks, where theNGS sequences can be processed independently
from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs
or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency
and saves both time and cost of computation.

1. Introduction

Over the past few years, cloud computing has emerged
as a new form of providing scalable computing resources
on demand. Customers using cloud services have access
to remote computational resources that can be scaled up
and down and they are charged according to the time of
utilization. The cloud model is appealing for many scien-
tific applications, where large computational resources are
required on an ad hoc basis for analyzing large datasets pro-
duced or collected after some experimental work. Currently,
there are a number of academic as well as commercial cloud
computing providers worldwide; these include AmazonWeb
Services (AWS) [1] (which pioneered the provision of such
services), Microsoft Azure [2], IBM Smart Cloud Enterprise
[3], Rackspace [4],Magellan [5], andDIAG [6], to name a few.

The bioinformatics academic community has already
recognized the advantages of cloud computing since its early
days and considered it as a promising solution to overcome
the ever increasing genomic data volume [7–12], especially for
the scientists with limited computational power. Cloud-based
software tools have been developed by the academic commu-
nity for the analysis of biological sequences. These include,
among others, Crossbow [13], RSD-Cloud [14], Myrna [15],
and CloudBurst [16]. The life science industry has moved in
the same direction and started to support cloud computing
as well. Interestingly, recent NGS instruments can stream
the sequenced reads to the cloud infrastructure during the
sequencing process (https://basespace.illumina.com/). This
has the advantage that all the new sequence data become
available in the cloud upon completion of the wet-lab
work.

http://dx.doi.org/10.1155/2013/791051
https://basespace.illumina.com/

2 BioMed Research International

This exciting advancement in providing cloud-based
bioinformatics services is however limited by the latency
of copying the user’s data to the computing machines in
the cloud. To take one example, uploading the African
human genome dataset (130GB) takes around 37 hours
with upload rate of one MB/s, while processing this dataset
(as we will show in the experiment) using Bowtie [17]
takes about 32 hours. That is, the data transfer time can
exceed or at least be a considerable fraction of the pro-
cessing time. This directly increases the overall experiment
time and accordingly increases the associated costs. Current
solutions to overcome this problem are mostly commercial
and they only focus on the reduction of the data transfer
time, by using faster data transfer protocols and compres-
sion techniques (c.f., [18], http://www.filecatalyst.com/ and
http://asperasoft.com/). These solutions are however limited
by the user’s bandwidth and the nature of the data that is
compressed and transferred. In this paper, we show that it
is possible to further reduce the overall experiment time by
incorporating an online data processing (streaming) scheme
to process the data while it is transferred. This solution
fits the wide class of NGS problems, in which the NGS
sequences can be processed independently from one another;
the problems of mapping NGS sequences to a reference
genome or searching them in a given set of databases are
examples of these problems. In the aforementioned example
of the African human genome, the overall processing time
using our scheme will converge to the data transfer time, as
the data transfer and computation proceed in parallel. As we
will show in the paper, this scheme has the extra advantage of
reducing the overall cost of the experiment due to the use of
fewer compute nodes.

In this paper, we present the incremental (online) data
processing package elastream (elastic-stream) that has the
following set of features:

(i) automatic creation and management of a computer
cluster in the cloud (including MapReduce clusters),
equipped with necessary NGS analysis tools,

(ii) automatic submission of jobs to the cluster and
monitoring them,

(iii) incremental (online) data processing for individual
tools as well as for workflow engines installed on the
cloud machines, even if the tools and engines do not
directly read/write to standard Unix pipes,

(iv) adaptive load balancing where the number of cluster
nodes can be increased or decreased in run time in
response to changes in the computation load.

To further facilitate the use of elastream for individual
applications, we provide a client software that can be used
from the user’s local machine to activate the elastream cloud
cluster and submit analysis jobs to it. Furthermore, we also
provide add-on’s in the form of workflows to enhance the
popular workflow systems Taverna [19, 20] and Galaxy [21].
These add-on’s facilitate the use of cloud computing power
with the data streaming option. These add-on’s are useful for
the developers and users of the Taverna and Galaxy systems

to scale up their resources and enhance the performance of
their workflows.

This paper is organized as follows: Section 2 includes
related work and a summary of the Amazon cloud computing
products. In Section 3, we introduce our elastream package,
which supports establishment and use of a cloud computing
cluster. In this section, we explain the design principles as
well as the implementation details of elastream. Section 4
introduces our on-line processing scheme for individual
tools as well as for workflow systems. Section 5 introduces
the features of elastream distribution and its add-ons. In
Section 6, we present a demonstration of our scheme based
on elastream in the Galaxy workflow system.We also evaluate
the performance of the streaming solution. Finally, Section 7
includes the conclusions and future work.

2. Background and Related Work

2.1. Cloud Computing and Amazon Web Services

2.1.1. Cloud Computing Services. Cloud computing provides
access to remote computing resources (processors, memory,
storage, bandwidth, software, etc.), where such resources
are encapsulated as services that can be metered and
charged for on a pay-per-usage basis. From a service-oriented
point of view, cloud computing services can be categorized
as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), or Software-as-a-Service (SaaS).

The SaaS model provides an abstraction of traditional
Internet applications. A piece of software is deployed at the
cloud provider’s site and is accessed as a remote service.
Using this model, analysis tools are deployed as acces-
sible remote services, allowing users to access and exe-
cute these tools. Crossbow [13], (http://bowtie-bio.source-
forge.net/crossbow/ui.html), which is hosted at Amazon, is
an example of these tools. In this case, users do not need to
worry about the low-level issues related to resource allocation
and execution of the tool; these are handled by the SaaS
provider.

The PaaS model provides an abstraction of a complete
development platform deployed as a service. The platform
typically comprises a restricted software development envi-
ronment with an associated software stack. This enables
application builders to develop new programs, usually for
specified classes of applications. A scientific workflow system,
for example, Galaxy [21], deployed in the cloud is an example
of a PaaS. In this case, again, it is the PaaS provider who
handles all resource allocation decisions and low level details
of workflow execution.

Within the IaaS model, a cloud service provider, such
as Amazon, hosts large pools of computing machines and
offers access to them via a set of APIs. Users can configure
the machines as they wish (operating system, software, etc.)
and then use them for executing their applications. The
machines provided are commonly virtual machines (VMs)
that the provider manages on behalf of the consumer. For the
provider, the use of the VM abstraction supports scalability
by allowing a physical machine to be shared by multiple VMs

http://www.filecatalyst.com/
http://asperasoft.com/
http://bowtie-bio.sourceforge.net/crossbow/ui.html
http://bowtie-bio.sourceforge.net/crossbow/ui.html

BioMed Research International 3

and also allowing them to bill users only for the time the VMs
are running. For the user, any number of virtual machines
can be allocated and configured. Moreover, SaaS and PaaS
applications can be freely installed and used. In this case,
the user has to handle decisions about VM configuration
and software installation as well as about allocation and de-
allocation of the VMs based on performance and budget
requirements.

2.1.2. Amazon Web Services. Because the current version
of elastream is based on the Amazon cloud infrastructure,
we review the basic technical and financial features of this
infrastructure. Our use of the Amazon platform is motivated
by the fact that it is the largest and most popular one so
far. Though, we would like to stress that the methods and
approaches presented in this paper are applicable to any cloud
computing platforms and are not specific to Amazon; it is
planned that future versions of elastream will support more
platforms.

Amazon Web Services (AWS) of Amazon offers infras-
tructure as a service (IaaS) in terms of computational power
(CPUs and RAM), storage, and connectivity. AWS offers a
variety of machine instance types that range in computing
power and cost. Table 1 summarizes the features of some
instance types including the strongest ones. With each of
these types, mounted disks (called ephemeral disks) are
also provided. Machine instances are created from Amazon
Machine Images (AMIs), which are templates containing
software configurations (e.g., operating system, application
server, and applications). AWS includes a directory of AMIs
prepared by the AWS team and by the community. The
deposited AMIs in this directory have different operating
systems and are equipped with different applications.

Because the ephemeral disks are volatile and vanish with
the termination of the virtual machine, AWS offers two types
of persistent storage: EBS and S3. The former is defined in
terms of volumes, where one or more EBS volumes can be
attached (mounted) to a running virtual machine instance,
similar to a USB thumb drive (volume size ranges between
1GB and 1 TB). The latter is like a data center providing data
hosting, accessed through certain methods (basically POST
and GET methods).

The AWS business model is “pay-as-you-go,” where the
user is charged only when own machines are running. The
user is also charged for reserved storage on Amazon and
for data transfer out of the AWS site and from/to persistent
storage solutions. Table 1 summarizes the storage options
and their prices in AWS (last price update November 2012).
For more information about the AWS pricing schemes, we
refer the readers to the documentation available in the AWS
website [1].

2.2. Related Work

2.2.1. Cloud-Based Solutions for Sequence Analysis. Currently,
there are some cloud-based programs for the analysis of next-
generation sequencing data. These include, among others,
Crossbow [13], RSD-Cloud [14], Myrna [15], and CloudBurst

[16]. In addition, there are some libraries and packages that
support the creation and management of computer clusters
in the cloud. To the best of our knowledge, these include
so far StarCluster [22], Vappio [23], and CloudMan [24].
StarCluster [22] has been developed as a general cluster
management solution for AWS and it is not specific to
bioinformatics applications or any bioinformatics use cases.
CloudMan [24] has been developed as part of the Galaxy
project to basically provide a version of the Galaxy workflow
system [21, 25] in the cloud. Vappio [23], unlike CloudMan, is
a standalone library for supporting the creation of a computer
cluster in the cloud. It enables submission of remote jobs
to the cloud instances. These solutions assume that the data
should be available in the cloud before any processing takes
place. Our work in this paper can be used to enhance these
solutions with incremental processing features.

2.2.2. Online Data Processing. Online data processing (also
referred to as streamor incremental data processing) has been
addressed since the early days of distributed computing, espe-
cially in the area of distributed database systems. Specifically,
pipelined query evaluation models have been introduced
to hide data transfer latencies within the processing of the
queries [26]. The same approach can be readily used in other
applications and over a computer cluster empowered by a
job-scheduler (e.g., PBS) to manage job submissions. Online
processing with the MapReduce framework is relatively new
and has just appeared in [27, 28]. The involved approach in
these papers is based on modifying the MapReduce imple-
mentation and providing a stream-based data processing
system underneath. The problem of these solutions is that
they have not yet been supported by the AmazonMapReduce
product. In this paper, we will overcome this limitation by
following a different approach based on the elasticity property
of the cloud model. But once it is supported by Amazon, we
will enhance our packagewith this feature to further serve the
bioinformatics community.

In preliminary work [29, 30], we evaluated the incremen-
tal data processing approach for certain bioinformatics tools
like SHRiMP [31] and Bowtie [17] based on an industrial
streaming engine (IBM InfoShphere Streams). In this paper,
we extend this work in several directions: first, we introduce
a scheme that supports stream processing in a generic way
with no dependencies on any streaming engine. Second, our
scheme is applicable not only to specific software tools but
also toworkflow systems likeGalaxy [21] andTaverna [19, 20].
Finally, our work supports incremental processing over the
Elastic MapReduce framework of AWS.

3. Elastream: Design and Implementation

3.1. Block Diagram. Elastream is a software package com-
posed of a set of modules for constructing a computer
cluster in the cloud and executing analysis jobs on it. Figure 1
shows the block diagram of elastream. As shown in Figure 1,
the package is composed of three basic modules: cloud
cluster creation module, cloud cluster runtime module, and job
module.

4 BioMed Research International

Table 1: Amazon services: virtual machines, storage, data transfer, and disk access. This information is for the Amazon US site. Prices for
other sites are available on the AWS website.

Resource type AWS service Service unit CPUs (#(GHz)) Memory (GB) Cost ($/Hr)
m1.large 2 (2) 7.5 0.32
m1.xlarge 4 (2) 15 0.64

Computation EC2 c1.xlarge 8 (2.5) 7 0.66
m2.4xlarge 8 (3.25) 68.4 1.80
cc1.4xlarge 8 (4.19) 23 1.30

Resource type AWS service Service unit Size Tiers Cost ($/GB/month)
S3 Bucket Unlimited 1st 1 TB 0.14

Storage S3 Bucket Unlimited Next 450 TB 0.1
S3 Bucket Unlimited Next 4000 TB 0.08
EBS Volume Up to 1 TB 0.10

Resource type AWS service Service unit Type Size Cost ($/GB/month)
S3 I/O Data IN/within AWS Any 0.00
S3 I/O Data OUT 1st 1 GB 0.00

Data transfer S3 I/O Data OUT Next 10 TB 0.12
S3 I/O Data OUT Next 100 TB 0.07
S3 I/O Data OUT Next 150+TB 0.05
S3 API GET, PUT, POST 1K request 0.01

Disk access S3 API COPY, LIST 1 K request 0.01
EBS I/O R/W 1M request 0.1

3.1.1. Cloud Cluster Creation Module. This module includes
functions for creation of the cluster in the cloud. These
functions can be categorized into three submodules.

The first submodule includes functions for setting up
the master node of the cluster. The master node is created
from the elastream virtual machine image, which we have
already prepared and deposited in AWS as AMI. This virtual
image includes the Linux operating system and all necessary
software libraries and packages. It also includes the whole
elastream package. (Detailed description of the image is given
in Section 5.) This sub-module is based on invoking certain
APIs provided by AWS. The activation of the cluster node
includes some built in bootstrapping scripts that conduct
necessary configuration steps (e.g., SSH key settings) and
installation of some important libraries and packages.

The second submodule includes functions for creating
the worker nodes and associating them to each other and
to the master node. The worker nodes are created from the
same elastream virtual machine image used for creating the
master node. This sub-module also includes installation and
configuration of the job scheduler (PBS Torque is the default
job scheduler) over the created worker nodes.

The third sub-module includes functions for creating the
EBS volumes and attaching them to the cluster nodes. It also
includes functions for connecting the nodes to the S3 storage
to save the result data. There are also functions to establish
shared storage among the cluster nodes usingNFS or through
S3 using S3fs so that the input data becomes available to every
job running at any node.

3.1.2. Cloud Cluster Run-Time Module. This module includes
functions responsible for checking the cluster status and

terminating the cluster. It also includes functions for adding
more nodes and attaching more EBS volumes and S3 buckets
to the cluster nodes.

3.1.3. Job Module. This module includes functions respon-
sible for submitting jobs to the cluster from a remote
machine. It also includes functions for checking job status
and redirecting the results to certain directories or to the
persistent S3 storage.

3.2. Use Case Scenario. Figure 2 shows the basic use case
scenario, in which the functions of elastream are used to
create a computer cluster in the cloud from remote user’s
machine and to submit analysis jobs to it. As mentioned
before, the cluster is created from the specific elastream vir-
tual machine image we have already prepared and deposited
in AWS. The first step in this use case scenario is that the
user installs the client program of elastream from its website.
This client program invokes the cluster creationmodule using
the user’s credentials so that the created computer cluster
is associated with the user’s account in AWS. The creation
procedure includes the following steps.

First, the function for creating the master node from the
elastream machine image is invoked. Once the master node
is created, a job request is sent to it to execute a program
in the master node that creates other worker nodes. This job
request includes invocation of the node creation function to
create the specified number of worker nodes. Technically, the
node creation function is the same as the one used for creating
the master node. The only difference is that it already has
the credential information, which is reused automatically.We
would like to stress that the image of any created machine

BioMed Research International 5

Cloud cluster creation module

∙ Setup access credentials
∙ Start machine instance
∙Retrieve access information

∙ Start machine instances
∙Retrieve access information

∙Mount EBS volumes
∙ Setup S3 storage

Job module

∙ Submit job to the cluster
∙ Stream input data
∙Retrieve result data

∙Check job status

Cloud cluster runtime module

∙Add/remove nodes
∙ Stop/terminate cluster
∙Adjust scheduler

∙Add/remove EBS
∙Adjust NFS and S3

∙Setup job schedulers (PBS, SGE,
EMR, etc.)
∙ Setup shared storage (NFS,

shared S3)

Establish master node Establish worker nodes

Storage setup
Configure cluster

Nodes Job submission

Job monitoringStorage

Figure 1: Elastream block diagram. Elastream is composed of three modules. Each module includes submodules conducting certain tasks.

includes the elastream package with all its functions that can
be directly used once the machine is activated. After the
creation of all worker nodes, another job request is sent to the
master node to configure the cluster and the job scheduler.
This job invokes a certain script in the cloud cluster to
accomplish this task. Once the configuration tasks have been
successfully completed, the cluster is ready to run any analysis
job.

Running an analysis job can be achieved by using the
client program (1) to execute a command line of the analysis
tool, (2) to specify the input, and (3) to specify the destination
directory of the output. Note that the command line itself can
specify that the analysis task runs through the installed job
scheduler. Note also that the job should invoke a program
already installed in the elastream machine. (Note that all
elastream programs are accessible once the cluster starts.) It
is important to mention that this mode of operation does
not prevent the user from accessing and utilizing the cluster,
using for example the SSH program. The user manual and
source code of the elastream functions are available on the
package website.

3.3. Major Implementation Details

3.3.1. Elastream Virtual Machine Image. To facilitate the use
of elastream, we prepared a virtual machine image deposited
at Amazon public pages. (The package website includes
details about this image and its ID in AWS.) The elastream
image is based on Ubuntu Linux and it is equipped with a
number of software packages, including Amazon Command
Line Tools (the APIs of Amazon), PBS Torque as a job
scheduler, NFS as a shared file system, s3fs [32] to handle the

S3 as a shared file system, Python/Perl interpreters, MPICH2,
and C/C++ and JRE. The image comprises a large library
of sequence analysis software tools, summarized in the next
section. It also contains the ready-to-use elastream modules
presented above. Furthermore, it includes a server module
and a client module to facilitate communication between the
nodes as described below.

3.3.2. Client-Server Software Pattern. To facilitate the com-
munication between the local machine and the master node
at one side and between the master node and other worker
nodes on the other side, we used a client-server software
pattern. We developed a server module and preinstalled it in
the machine image. This server module starts automatically
whenever the respective machine is activated from its image;
this includes the master node as well as any worker node.
(We use operating system features to enable creation and
automatic startup of the server; see the manual for more
details.) The server module listens to certain ports, identifies
the incoming messages from the client, maps them to one of
the functions in the modules discussed above, and executes
them.The client connects to the server through the specified
port and invokes one of the server functions. Note that
the elastream machine image includes a copy of the client
program so that its functionalities are used inside the cloud to
create extra nodes and to submit specific jobs to all or certain
worker nodes. The server and client are written in Python,
and both of them use APIs of AWS to handle all cloud-
related functions. They also use (shell) scripts we developed
to configure the cluster and the associated job scheduler.
For remote job submissions (from the client program to the
cloud cluster), we have developed and used an asynchronous

6 BioMed Research International

1
2
3
4
5

1

2

3
4

5

S3storage

Control
Data flow

Cloud
platform

(Instance disks)
EBS

Instantiate master node in the cloud
Master node creates worker nodes
Instance disks are mounted
Connection to S3 is established
Run analysis job

Figure 2: Use case scenario based on the functions of elastream. The user uses the client program from own local machine to establish and
use a computer cluster in the cloud.

protocol.This protocol is similar to the RESTful protocol and
it is implemented in Python.

3.3.3. Establishment of MapReduce Clusters. MapReduce [33]
is a programming model and an execution framework that
facilitates the processing of large amounts of data on a
computer cluster. Amazon offers a product for MapReduce
called Elastic MapReduce (EMR), based on the open source
Hadoop implementation of MapReduce.

Compared to job schedulers, the MapReduce model
is more complex, as it requires that the analysis task is
formulated in terms of a Map and a Reduce functions. The
former function processes the input items in parallel and
emits the results as well as some key-value pairs. The Reduce
function uses these pairs to postprocess the output of theMap
function in parallel. Considerable programming experience
is usually needed so as to fit the structure of computation
at hand in terms of Map-Reduce functions. Moreover, not
all problems can be formulated in the MapReduce model.
Nevertheless, the advantage of using the EMR product lies in
its lower machine price compared to traditional nodes of the
same type (e.g., one c1.xlarge instance costs $0.66 when used
in traditional cluster and costs just $0.12 when used in EMR).
These reduced costs make it appealing to use the EMR for
NGS data processing. Furthermore, various bioinformatics
programs are already based on the MapReduce framework
and are demonstrated to work using the EMR product.
Examples of these tools include Crossbow [13], RSD-Cloud
[14], Myrna [15], and CloudBurst [34].

The client programof elastream can create an EMRcluster
using the APIs of AWS from the user’s local machine. The
creation steps are similar to that of the traditional cluster
but there are some differences due to the MapReduce model
and Hadoop implementation. The EMR cluster cannot be
created from a user’s own image, such as the elastream image
we prepared. It can only be built from specific EMR images
previously created by the Amazon team. The EMR image

contains the basic Hadoop code and basic programming
languages (Java and Python), but it does not include any
analysis software. Therefore, the required analysis programs
should be installed using a bootstrap script specified in the
creation function. Note that the bootstrap script is executed
before the Hadoop system starts, and it can be generally used
for any necessary (initialization) tasks related to the required
analysis. (The elastream manual includes an example of this
bootstrap script).

Analysis jobs can be directly submitted, once the cluster
is created and Hadoop system starts. The analysis job is
specified using a distinct elastream command, and it should
include the path to the input data as well as the Map and
Reduce functions implemented either in Java or Python. The
elastream composes a Hadoop job using these items and
executes it on the EMR cluster.

3.3.4. Stream Processing Support. To support online data
processing, the job submission/execution method of the
elastream has to be extended with an additional layer. The
following section includes the underlying scheme and the
implementation details of this layer. In that section, we will
discuss this scheme with traditional and EMR clusters. We
will also discuss how it can be used within workflow systems.

4. Online Sequence Processing

In this part, we describe our method to support on-line
sequence processing for both individual analysis tools and
workflow systems. Our method does not depend on any
streaming engine and does not require that the involved tools
or systems are able to read and write to the standard Unix
pipes.

4.1. Supporting Individual Tools. To support incremental
data processing in the cloud, we developed the software
design pattern shown in Figure 3. This pattern works only

BioMed Research International 7

Received and
queued data

streams
Preprocessed

data

server

Computer
clusterControl flow

Data flow

client
User’s local
machine

Distributed data
for processing

Raw
data Compute

node

elastream
elastream

Figure 3: Software design pattern to support incremental data processing in the cloud. The client streams the data into the cloud cluster.
The server monitors the received data buckets and manages the launch of analysis jobs on cluster nodes. After completion, the output data is
either transferred back to the client machine or transferred to the user’s S3 account.

for data intensive tasks in which input sequences can be
processed independently from one another. Examples of such
problems include, among others, mapping NGS sequences
to a reference genome and searching sequences in a given
set of databases. In this pattern, a local machine streams
the data to a cloud cluster and an analysis program already
available in that cluster will begin with the processing as soon
as the data arrive. To achieve this, there is a server (we call it
streaming server) installed in the cloud machine and a client
program (we call it streaming client) at the local machine.
The streaming client communicateswith the streaming server
to start a job in the cloud. The job submission in this
pattern includes (1) sending the command line specifying
the respective program call and (2) the transfer of the data
from the local machine to the cloud machine. Note that the
data transfer issue is in sharp what distinguishes this method
of job submission from the previousely described offline
(nonstreaming based) one, which requires that the input
data is completely uploaded to the cloud before starting the
analysis. While the data is being transferred, the streaming
server monitors the incoming data stream, parses it into
sequences, and accumulates the sequences in buckets. When
a bucket is complete, the analysis tool is invoked to process
the bucket at hand. If the data transfer rate is so high that
many buckets are ready at one time point, then more jobs are
launched in parallel to process the buckets. After completion,
the output data can be downloaded to the user’s localmachine
or exported to an S3 account.

The client module of this design pattern can do more
than establishing a connection to the server and transferring
data to it. Actually, it can preprocess the data before sending
it to further speed up data transfer and reduce the server
side work. This pre-processing includes partitioning the data
into chunks and compressing them. In this case, the server

expects to receive chunks and it just forward them to the next
processing steps.

This design pattern is implemented in elastream by
extending the functionality of both the server and the client
programs. The elastream server is extended by two extra
threads per job. The first thread is for receiving the data
stream, and the second is for monitoring the incoming
data and constructing the buckets. The latter thread is also
responsible for submitting the jobs to process the completed
buckets in a pipelined fashion; that is, a just completed bucket
can be directly processed even if the previous buckets are
still being processed. The client program can be extended
by dividing the data into buckets and sending them in
sequence.

4.2. Streaming for MapReduce-Based Applications. The Elas-
tic MapReduce (EMR) product of AWS does not support
incremental data processing and assumes that all the data is
available in the cloud in advance. To overcome this limitation,
we use the same scheme in which the input data is divided
into buckets and these are processed independently. We also
make use of the elasticity property of the cloud to expand the
cluster when needed. The details are as follows.

Elastream provides a programmatic means for creating
and using the Elastic MapReduce (EMR) product of AWS.
Therefore, an initial EMR cluster is first constructed when
an analysis job is submitted. The streaming server monitors
the received data and accumulates them into buckets. Once
a bucket is complete, a Hadoop job is submitted to process
this bucket over the EMR. This solution looks fine, but its
scalability is in fact limited due to the following reason.
EMR is offline in the sense that new buckets cannot join
the parallel processing of the currently running job even if

8 BioMed Research International

A B

X =
𝑥1

𝑥𝑛

𝑎1

𝑎𝑛

𝑏1

𝑏𝑛
A([X]) B(A([X]))

...
...

...

(a)

, 𝑏2, 𝑏1A B
. . . 𝑥8, 𝑥7 . . . 𝑎5, 𝑎4 . . .

A(𝑥6) B(𝑏3)

(b)

Figure 4: Streaming/pipelining in workflow systems: (a) no pipelining, where A starts computation only when all its input items [𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑛
]

are available, and so does B which processes the output items of A. (b) Pipelining, where A starts computation when any data item is available,
and so does B. Note that in this mode A and B run concurrently on different data items.

there are enough resources, and the new buckets have to
be queued to be processed one after another. To overcome
this limitation, we exploit the elasticity property of the cloud
and automatically create another EMR cluster to process the
pending buckets.This elastic creation of EMRclusters enables
processing of the buckets with minimal queuing time.

4.3. SupportingWorkflow Systems. Bioinformatics workflows
include the use of multiple software tools and data resources
in a staged fashion, with the output of one tool being passed as
input to the next. Workflow systems have been introduced to
facilitate the design and execution of sophisticatedworkflows.
Examples of the systems that support sequence analysis
applications include, among others, Taverna [19, 20], Kepler
[35], Triana [36, 37], Galaxy [21], Conveyor [34] Pegasus
[38], and Pegasys [39]. In these systems, the workflows are
represented in the form of a directed graph, where nodes
represent tasks to be executed and edges represent either data
flow or execution dependencies between different tasks. The
workflow system maps the edges and nodes in the graph
to real data and software components. The workflow engine
(also called execution or enactment engine) executes the
software components either locally on the user’s machine
or remotely at distributed locations. The engine takes care
of data transfer between the nodes and can also exploit the
use of high-performance computing architectures so that
independent tasks run in parallel. This allows the application
scientists to focus on the logic of their applications without
worrying about the technical details of invoking the software
components or using distributed computing resources.

There are two classes of workflow engines: one that
supports stream processing (also referred to as pipelining in
workflow literature) and others that do not. For example, the
engines of Kepler [35] and Taverna [19, 20] belong to the first
class, while the engines of Galaxy and Conveyor [34] belong
to the second one.The idea of pipelining in workflow engines
is illustrated in Figure 4. In engines that support pipelining,
the output of task A is a list of items [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
] and task B

can start processing whenever an item 𝑎
𝑖
is produced. That

is, tasks A and B can run concurrently in such workflow
systems. In engines not supporting pipelining, task A must
finish computation over all list items [𝑎

1
, . . . , 𝑎

𝑛
], before B

starts processing.
Changing a workflow system to support pipelining re-

quires somemodification of theworkflow engine itself, which
is a difficult task. Still, this modification is not sufficient

per se to achieve efficient online processing during data
transfer. This is because some tools within the workflow
may not support pipelining at all, which would lead to
blocking at some stage of the workflow. To overcome these
issues and to support on-line data processing, even for those
workflow engines that do not support pipelining, we suggest
the following strategy.

We handle the whole workflow system as a usual program
that can be invoked from the command line to execute a
given workflow over certain input data. In the streaming
mode, the streaming servermonitors the incoming data items
to establish sequence buckets. Once a bucket is ready, the
workflow engine is invoked to process this bucket. If multiple
buckets are available, multiple instances of the workflow
engine are invoked in parallel to process these buckets. This
solution permits stream processing even if the workflow
engine does not directly support this mode of execution
and even if the tools within the workflow do not support
pipelining.

5. Elastream Distribution

5.1. Basic Components. The elastream distribution includes
the package executables, the source code, and the client
program to be used from a local machine to invoke package
functionality in the cloud. The distribution also includes the
following additional features that further facilitate its use for
bioinformatics applications.

(i) We prepared a virtual machine image (AMI)
deposited at the AWS machine image directory. The
elastream package website includes details about
this image and its identifier in AWS. This virtual
machine image can be used to create a computer
cluster from the AWS interface or from our client
program installed in the local machine.The elastream
image includes a set of preinstalled tools that can be
directly accessed upon the creation of the cluster.
In the current version of elastream, there are about
200 tools, coming from BioLinux, EMBOSS [40],
SAMtools [41], fastx [42], NCBI BLAST Toolkit
[43–45], and other individual sequence analysis
programs. Addition of extra tools and updating this
image is explained in the elastreammanual.

(ii) To save costs and to facilitate usage of database-
dependent programs, we prepared snapshots of dif-
ferent biological databases and indexes, including the

BioMed Research International 9

Figure 5: The use of elastream in Galaxy in the form of a workflow that establishes the cloud machines and submit jobs. The key nodes of
this workflow are the Create Cluster and Run a job. The parameters associated with these nodes are set in the right pane of the web-based
interface. We show a part of the file including a command line and a part of another file including NGS sequences; these files are referenced
to in the nodes “Input dataset” connected to the “Run a Job.”

NCBI nucleotide and protein databases in the form of
raw and formatted sequences; the raw human genome
sequence, and precomputed indexes of it for Bowtie
[17]. These snapshots are made available to the user
free of charge through a simple interface, to create
EBS volumes and mount them to the cluster.

5.2. Elastream inWorkflow Systems. We have developed add-
on’s (as subworkflows) to support the popular workflow
systems Taverna and Galaxy with cloud computing power
enhanced with the data streaming option. These add-on’s are
available as part of elastream distribution.

For Galaxy, we have created a workflow that enables
streaming based on elastream.This workflow, which is shown
in Figure 5, is composed of the following. There are two
major nodes: “Create Cluster” and “Run a Job.”The former is
responsible for creating a cluster and the latter is responsible
for submitting a job. These two nodes use the functionalities
of the elastream client program, which is installed within
the Galaxy tool set. The elastream website includes a link
to a Galaxy system with this workflow already built in. The
website includes also information for Galaxy administrators
on how to integrate this workflow in their systems. We also
like to attract the attention that these workflow nodes can be
generically used in other user created workflows.

The number and type of machines for the
“Create Cluster” node are specified in an adjacent editing
area on the right side of the GUI. The two nodes titled
“Input Dataset” connected to “Create Cluster” node specify

the credential files (certificate and private key files) required
to associated the created cluster with the user’s account.
(Note that input node names cannot be changed in Galaxy).

The “Run a Job” node is responsible for (1) transferring
the data from the local user’s machine to the cloud machines,
(2) invoking a tool (or a system) already installed in the
cloud machine, and (3) transferring the result data to the
local machines or the S3 cloud storage. The parameters for
the “Run a Job” node are also specified in an adjacent editing
area on the right-hand side of the GUI. The parameters
mainly associate the input files to variable names in the
command line and specify if streaming is enabled or not.
The input node connected to the command port of the
node “Run a Job” specifies the command line of the analysis
program in the cloud.The input node connected to the input1
port specifies the input data. The input to this workflow is a
set of sequences to be processed in the cloud.The “Run a Job”
node includes an optional process to split the input data into
chunks before sending them to the cloud.

For Taverna, the workflow that enables streaming is
composed of two Taverna sub-workflows for management of
the cloud cluster and submission of jobs in streaming mode.
This workflow can be generically used as sub-workflows in
other user created workflows running on Taverna. Figure 6
shows these two Taverna workflows. The first workflow
(called CreateCluster) establishes a computer cluster in the
cloud. The blue nodes (rectangles) in this workflow define
the parameters for creating the cluster. The node titled nodes
specifies the number and type of nodes, the node path

contains the working directory in the cloud machine, the

10 BioMed Research International

Nodes Path awsFile S3 Security group Key ec2client

CreateCluster

Output
Create cluster

workflow

Workflow output ports

Run job
workflow

Workflow input ports

Reads

Inputsmap Command Outputsmap SplitReads Domain Stream

Run job

Workflow output ports

UnAlignedReads Alignments

Figure 6: The use of elastream with Taverna in the form of a workflow that establishes the cloud machines and submit jobs. The key nodes
of this workflow are the Create Cluster and run Job nodes. The former is responsible for creating computer cluster in the cloud. The latter
workflow submits jobs to the remote cloud machines.

node awsFile includes the Amazon access credentials, the
node S3 states the name of S3 bucket, the nodes securityGroup
and key specify the security groups, and the node ec2client
defines the path to the elastream client tools on the machine
where Taverna runs. (Note that the parameters of a node in
Taverna are specified through other direct predecessor nodes
and not through edit boxes in GUI as in Galaxy.)

The second workflow (called runJob) is responsible for
(1) transferring the data from the local user’s machine to the
cloud machines, (2) invoking a tool (or a system) already
installed in the cloud machine, and (3) sending the result
data to the local machines or cloud S3. The input to this
workflow is a set of sequences to be processed in the cloud.
The blue nodes specify the parameters of this workflow: The
node titled stream specifies the streaming option, the node
command includes the command line to be invoked, and the
nodes Inputsmap andOutputsMapmap the input and output
ports to the command (see the manual for more details). If
output ports are not specified, then the result data will not
be transferred back to the local machine and remain in the
cloud.This workflow includes an optional process to split the
input data into chunks before sending them to the cloud.

6. Demonstrations and Experiments

In this section, we demonstrate the use of our streaming
scheme elastream and evaluate its performance. In the fol-
lowing subsection, we demonstrate the use of the Galaxy
workflow that supports streaming as discussed in Section 5.2.

In the subsequent sub-section, we evaluate the performance
of our solution using traditional and EMR computer clusters.

6.1. Streaming Cloud-Based Workflows of Galaxy. Figure 7
shows the sequence of steps for using the Galaxy workflows,
which we have provided to support the use of cloud comput-
ing enhanced with the streaming option within Galaxy. From
the elastream website, the user can access the Galaxy work-
flow system, which is running on our local infrastructure.
Our workflows that support cloud usage with streaming are
accessed by selecting the elastream demo from theworkflows
drop-down menu. The workflow editing page shows the
workflow nodes, where the user can specify the number and
type of the cluster machines. If anyone decides to execute
this workflow, one will be forwarded to the execution and
input page to enter the paths to the credential file, security
file, command line file, and input NGS data. For this demo,
we have already provided example files for these input types.
The example command line includes invocation of the Bowtie
program [17] with a set of NGS sequences as input. We stress
that this workflow can be used in other Galaxy workflows or
with tools other than Bowtie.

6.2. Evaluating Performance. We compare two use case sce-
narios: in the first, the data is processed after it is transferred
completely to the cloud (i.e., without on-line processing). In
the second, the data is processed while it is transferred (i.e.,
with on-line processing).

BioMed Research International 11

Figure 7: The Galaxy workflow system supported with cloud computing functionalities and streaming option. The upper left screen shot is
the elastream page, from which the user can access the Galaxy workflow system installed on the elastream infrastructure. The upper right
screen shot is the Galaxy page, where the user selects the elastream workflow. The lower left is the elastream workflow, and the lower right is
the input/execution page, where the user specifies the paths of the input files including command line, credentials, and input data.

Table 2: Description of the used datasets. All the datasets are NGS sequences (reads). The third column includes the number of sequences
in millions, and the third column is the data size in GB.There are four sets of the African human genomes of different sizes. The final dataset
(130G) is the original complete one. The three previous ones (1 G, 10G, 40G) are subsets of it.

Description Source No Seq Size
E. coli genome [13] ≈9 million ≈1.4 GB
1G African human genome http://trace.ddbj.nig.ac.jp/dra/index e.shtml (study SRP000239) ≈7 million ≈1 GB
10G African human genome http://trace.ddbj.nig.ac.jp/dra/index e.shtml (study SRP000239) ≈72 million ≈10GB
40G African human genome http://trace.ddbj.nig.ac.jp/dra/index e.shtml (study SRP000239) ≈437 million ≈40
130G African human genome http://trace.ddbj.nig.ac.jp/dra/index e.shtml (study SRP000239) ≈1419 million ≈130GB

The data intensive task we used in our experiments is
the NGS read mapping, where millions of reads have to be
aligned to a reference genome. On the traditional cluster, we
used the popular program Bowtie [17] as an example tool that
performs this task. On the MapReduce cluster, we used the
popular Crossbow [13] program. Crossbow is a MapReduce
based version of Bowtie implemented using Hadoop and it
is enhanced with more functions for SNP detection using
soapSNP.

The parameters of these experiments are the data size,
the upload speed, and the size of the computer cluster. We
used datasets of different sizes, as described in Table 2. The
upload speed has been controlled using the program Trickle

[46]. To reduce the effects of location, time-of-the-day, and
congestion on data transfer, we ran the whole experiments
within the Amazon cloud environment. That is, we created
one machine to represent the user’s machine. This machine
is equipped with the Trickle program and the elastream client
program.Thebandwidthwe observedwithin theAmazon site
is approximately 20MB/s to 30MB/s, which is large enough
for our experiments.

Table 3 shows the runtimes for executing Bowtie in
streaming and non-streamingmodes using computer clusters
of variable size. Each cluster node is of the type c1.xlarge

and is composed of 8 cores. Each row in the table shows the
upload speed, the upload time, and the computation time for

http://trace.ddbj.nig.ac.jp/dra/index_e.shtml
http://trace.ddbj.nig.ac.jp/dra/index_e.shtml
http://trace.ddbj.nig.ac.jp/dra/index_e.shtml
http://trace.ddbj.nig.ac.jp/dra/index_e.shtml

12 BioMed Research International

Table 3: Running times in minutes for mapping NGS reads to a reference genome using Bowtie based on the use of traditional computer
cluster. The column titled upload speed specifies the upload speed. The column titled “upload” includes the time in minutes for uploading
the data to the cloud with the respective upload speed.The column titled “compTime” includes the computation time in minutes of the whole
dataset after being uploaded to the cloud. The column titled totalTimeS includes the experiment time in streaming mode and the column
titled totalTimeT includes the time in nonstreamingmode, where all the data is first transferred and then processed.The numbers in brackets
in this column are the respective monetary cost.

Upload speed Read size Nodes Upload CompTime TotalTimeT TotalTimeS
E. coli reads

250KB/s 1.4G 1 100 3 103 ($1.32) 102 ($1.32)
250KB/s 1.4G 2 100 3 103 ($1.98) 102 ($2.64)
250KB/s 1.4G 4 100 3 103 ($3.3) 102 ($5.28)

1 GB human reads
250KB/s 1 G 1 71 17 88 ($1.32) 72 ($1.32)
250KB/s 1 G 2 71 11 82 ($1.98) 72 ($2.64)
250KB/s 1 G 4 71 7 73 ($3.3) 72 ($5.28)

10GB human reads
250KB/s 10G 1 800 (13.3 h) 220 1021 ($11.88) 832 ($9.24)
250KB/s 10G 2 800 (13.3 h) 130 930 ($12.54) 818 ($9.24)
250KB/s 10G 4 800 (13.3 h) 60 860 ($11.88) 818 ($9.24)

E. coli reads
1MB/s 1.4G 1 25 3 28 ($0.66) 27 ($0.66)
1MB/s 1.4G 2 25 3 28 ($1.32) 27 ($1.32)
1MB/s 1.4G 4 25 3 28 ($2.64) 27 ($2.64)

1 GB human reads
1MB/s 1 G 1 18 17 35 ($0.66) 21 ($0.66)
1MB/s 1 G 2 18 11 29 ($1.32) 21 ($1.32)
1MB/s 1 G 4 18 7 25 ($2.64) 21 ($2.64)

10GB human reads
1MB/s 10G 1 200 220 421 ($5.28) 231 ($2.64)
1MB/s 10G 2 200 130 330 ($5.94) 215 ($5.28)
1MB/s 10G 4 200 60 261 ($5.28) 215 ($10.56)

40GB human reads
1MB/s 40G 1 690 590 1280 ($14.52) 1100 ($12.54)
1MB/s 40G 2 690 325 1015 ($15.18) 695 ($15.84)
1MB/s 40G 4 690 180 870 ($15.84) 695 ($31.68)

130GB human reads
1MB/s 130G 1 2220 1720 3940 ($43.56) 3600 ($39.6)
1MB/s 130G 2 2220 940 3160 ($45.54) 2400 ($52.8)
1MB/s 130G 4 2220 520 2740 ($48.18) 2400 ($105.6)
1MB/s 130G 8 2220 284 2504 ($50.82) 2400 ($211.2)

E. coli reads
10MB/s 1.4G 1 2.5 3 5.5 ($0.66) 5 ($0.66)
10MB/s 1.4G 2 2.5 3 5.5 ($1.32) 5 ($1.32)
10MB/s 1.4G 4 2.5 3 5.5 ($2.64) 5 ($2.64)

10GB human reads
10MB/s 10G 1 18 220 238 ($2.64) 180 ($1.98)
10MB/s 10G 2 18 130 148 ($3.96) 85 ($2.64)
10MB/s 10G 4 18 60 78 ($3.3) 50 ($2.64)

40GB human reads
10MB/s 40G 1 70 590 660 ($7.26) 686 ($7.92)
10MB/s 40G 2 70 310 380 ($8.58) 350 ($7.92)
10MB/s 40G 4 70 170 240 ($8.58) 180 ($7.92)
10MB/s 40G 8 70 95 165 ($11.22) 100 ($10.56)
10MB/s 40G 16 70 53 123 ($11.88) 73 ($21.12)

BioMed Research International 13

Table 3: Continued.

Upload speed Read size Nodes Upload CompTime TotalTimeT TotalTimeS
130GB human reads

10MB/s 130G 1 224 1720 1944 ($21.78) 2050 ($23.1)
10MB/s 130G 2 224 950 1174 ($23.76) 1100 ($25.08)
10MB/s 130G 4 224 520 744 ($26.4) 580 ($26.4)
10MB/s 130G 8 224 284 508 ($33.66) 320 ($31.68)
10MB/s 130G 16 224 160 384 ($34.32) 235 ($42.24)

certain cluster size. It also includes the total experiment time
without streaming (which is the summation of upload and
computation times) and total time with streaming.

From the results in Table 3, we observe the following.

(i) The use of more machines leads to further reduction
of the runtime. For example, it takes 950 minutes to
analyze the 130Ghuman dataset using a cluster of two
nodes, and it takes 160 minutes if the cluster size is
increased to 16 nodes.

(ii) The streaming mode reduces the overall experiment
time, because there is an overlap between data
transfer and computation. For example, it takes 508
minutes to upload the 130G human datasets and to
analyze it using a cluster of 8 nodes without streaming
(with upload speed of 10MB/s). With streaming, it
takes 320minutes, which saves about 188minutes (i.e.,
≈37%). With 16 nodes, it takes 384 minutes without
streaming and 235 with streaming (i.e., 38%). One
can easily note that the overall experiment time with
streaming converges to the overall data transfer time
of 224 minutes.

(iii) Comparing the different datasets, we note that the
advantage of using on-line processing is more appar-
ent with larger data sizes. For small datasets, like
the E. coli, where the computation time is neglected,
the overhead associated with processing the buckets
outweighs the advantage of streaming.

(iv) With slower transfer rate, there is no advantage in
using more machines, because there is no much data
to be processed in parallel. The E. coli and 1M human
genome cases with transfer rates of 250KB/s and
1MB/s represent this situation.

(v) The advantage with respect to the cost of the exper-
iment can be observed when we fix the computation
time and compare the experiment cost. For the 130GB
humandataset, the cost of finishing the analysis in 320
minutes using streaming over a cluster with 8 nodes
is $31.68. To finish the experiment in the same time,
a larger cluster of more than 16 nodes is needed with
a cost larger than $34.32.

Table 4 shows the runtimes in minutes for mapping NGS
reads to a reference genome using Crossbow based on the
Elastic MapReduce (EMR) product of Amazon. In Table 4,
there are more than one EMR clusters in each experiment;
this is because we establish a new cluster when more buckets
become available. The column titled cluster includes the

number of these clusters. Each cluster is composed of 4 nodes
of the type c1.xlarge.

In this experiment, the results are analogous to that
obtained with the traditional cluster running Bowtie. Here,
we also observe that the streaming mode is also superior
to the nonstreaming mode with larger datasets. The use
of streaming option is not advantageous for small datasets,
because Crossbow has some overhead time to preprocess
each bucket received, and this overhead outweighs the gain
of streaming.

7. Conclusions

In this paper, we have introduced elastream as a framework
for supporting incremental data processing in the cloud.This
framework, which is based on the client-server model, is
composed of (1) a module for creating and management of
cloud computing infrastructure, (2) a module for submission
of jobs to the cloud machines with incremental processing
feature, (3) a prepared virtual machine image equipped with
a large library of bioinformatics tools and databases and all
necessary tools, and (4) add-ons in the form of workflows for
the popular workflow systems Taverna and Galaxy.

Elastream targets the class of tasks where the input data is
composed of large number of sequences that can be processed
in parallel. Examples of such tasks includeNGS readmapping
and blast based queries. Our experiments have shown that
the streaming option is useful when the dataset is large
enough and the amount of computation at the server size
is considerable. With streaming option, one can use fewer
machines to finish computation, which leads to reduction
of the cost. To sum up, our elastream facilitates the use of
cloud computing resources for these tasks and its streaming
option is of significant advantage to mitigate the effect of the
associated data transfer latency.

Currently elastream is limited to AWS and to Linux
environment. In future versions, we will extend it to include
other cloud providers and the Windows operating system.
Streaming forMapReduce requires that the tool has short pre-
processing time, as this forms an overhead that limits the use
of on-line processing option. In this version of elastream, we
did not use streaming-based MapReduce solution, because
they are not yet supported by Amazon. Once they are
supported, we will integrate them as part of our package
distribution.

All resources related to elastream are available at
http://www.nubios.nileu.edu.eg/tools/elastream and http://
www.elastream.org/.

http://www.nubios.nileu.edu.eg/tools/elastream
http://www.elastream.org/
http://www.elastream.org/

14 BioMed Research International

Table 4: Running times in minutes for mapping NGS reads to a reference genome using Crossbow. The column titled speed specifies the
upload speed.The column titled cluster includes the number of created EMR clusters.The column titled compTime incudes the computation
time of the whole data after uploading it. The column titled totalTimeS includes the experiment time in streaming mode, and the column
titled totalTimeT includes the time in nonstreaming mode, where all the data is first transferred and then processed.The number in brackets
in this column is the respective monetary cost.

Upload speed Read size Clusters Upload time CompTime TotalTimeT TotalTimeS
E. coli reads

250KB/s 1.4G 1 100 9 109 ($0.72) 110 ($0.96)
250KB/s 1.4G 2 100 7 107 ($1.2) 110 ($1.92)
250KB/s 1.4G 4 100 7 107 ($2.26) 110 ($3.84)

1 GB human reads
250KB/s 1 G 1 71 6 77 ($0.72) 84 ($0.96)
250KB/s 1 G 2 71 5 76 ($1.2) 84 ($1.92)
250KB/s 1 G 4 71 5 76 ($1.2) 84 ($3.84)

10GB human reads
250KB/s 10G 1 800 60 860 ($2.16) 820 ($6.82)
250KB/s 10G 2 800 31 831 ($2.64) 820 ($13.44)
250KB/s 10G 4 800 18 818 ($3.6) 820 ($26.88)

E. coli reads
1MB/s 1.4G 1 25 9 34 ($0.6) 65 ($0.96)
1MB/s 1.4G 2 25 7 32 ($1.08) 65 ($1.92)
1MB/s 1.4G 4 25 7 32 ($2.04) 65 ($3.84)

1 GB human reads
1MB/s 1 G 1 18 6 24 ($0.6) 31 ($0.48)
1MB/s 1 G 2 18 5 23 ($1.09) 32 ($0.96)
1MB/s 1 G 4 18 5 23 ($2.04) 31 ($0.1.92)

10GB human reads
1MB/s 10G 1 200 60 260 ($0.96) 220 ($1.92)
1MB/s 10G 2 200 31 231 ($1.54) 220 ($3.84)
1MB/s 10G 4 200 18 218 ($2.40) 220 ($7.68)

40GB human reads
1MB/s 40G 1 690 580 1270 ($6.24) 630 ($5.28)
1MB/s 40G 2 690 300 990 ($6.24) 630 ($10.56)
1MB/s 40G 4 690 150 840 ($7.2) 630 ($21.12)
1MB/s 40G 8 690 80 770 ($9.12) 630 ($42.24)

130GB human reads
1MB/s 130G 1 2220 1890 4110 ($19.8) 2360 ($19.2)
1MB/s 130G 2 2220 945 3165 ($19.8) 2320 ($37.44)
1MB/s 130G 4 2220 476 2696 ($19.8) 2320 ($74.88)
1MB/s 130G 8 2220 184 2404 ($19.8) 2320 ($149.76)
1MB/s 130G 16 2220 126 2346 ($27.48) 2320 ($299.52)

10GB human reads
10MB/s 10G 1 20 60 80 ($1.08) 160 ($1.44)
10MB/s 10G 2 20 31 51 ($1.08) 95 ($1.92)
10MB/s 10G 4 20 18 38 ($2.04) 65 ($3.84)

40GB human reads
10MB/s 40G 1 70 580 650 ($5.04) 610 ($5.28)
10MB/s 40G 2 70 300 370 ($5.04) 310 ($5.76)
10MB/s 40G 4 70 150 220 ($6.00) 170 ($5.76)
10MB/s 40G 8 70 80 150 ($7.92) 110 ($7.68)

130GB human reads
10MB/s 130G 1 224 1890 2114 ($15.84) 1960 ($15.84)
10MB/s 130G 2 224 945 1169 ($15.84) 1000 ($16.32)
10MB/s 130G 4 224 476 700 ($15.84) 520 ($17.28)
10MB/s 130G 8 224 184 470 ($15.84) 300 ($19.2)
10MB/s 130G 16 224 126 350 ($23.52) 300 ($38.4)

BioMed Research International 15

Authors Contribution

All authors contributed equally to this work and all authors
have read and approved the manuscript.

Acknowledgments

This work was made possible by NPRP grant 4-1454-1-233
from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the
responsibility of the authors. The authors thank Amazon for
supporting the experimental work on AWS.

References

[1] AWS (Amazon Web Services), http://aws.amazon.com/.
[2] W. Azure, http://www.microsoft.com/windowsazure/.
[3] IBM Smart Cloud Enterprise, http://www.ibm.com/cloud-

computing/.
[4] Rackspace, http://www.rackspace.com/.
[5] “Magellan—a cloud for Science,” http://magellan.alcf.anl.gov/.
[6] DIAG-Data Intensive Academic Grid, http://diagcomputing

.org/.
[7] E. Pennisi, “Will computers crash genomics?” Science, vol. 331,

no. 6018, pp. 666–668, 2011.
[8] M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud comput-

ing and the DNA data race,”Nature Biotechnology, vol. 28, no. 7,
pp. 691–693, 2010.

[9] A. Bateman and M. Wood, “Cloud computing,” Bioinformatics,
vol. 25, no. 12, p. 1475, 2009.

[10] J. T. Dudley andA. J. Butte, “In silico research in the era of cloud
computing,” Nature Biotechnology, vol. 28, no. 11, pp. 1181–1185,
2010.

[11] L. D. Stein, “The case for cloud computing in genome informat-
ics,” Genome Biology, vol. 11, no. 5, article 207, 2010.

[12] V. Fusaro, P. Patil, E. Gafni, D. Wall, and P. Tonellato, “Biomed-
ical cloud computing with Amazon web services,” PLOS Com-
putational Biology, vol. 7, no. 8, Article ID e1002147, 2011.

[13] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with cloud computing,” Genome Biology,
vol. 10, no. 11, article R134, 2009.

[14] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov, P. Patil, and P.
Tonellato, “Cloud computing for comparative genomics,” BMC
Bioinformatics, vol. 11, article 259, 2010.

[15] B. Langmead, K. D. Hansen, and J. T. Leek, “Cloud-scale
RNA-sequencing differential expression analysis with Myrna,”
Genome Biology, vol. 11, no. 8, article R83, 2010.

[16] M. C. Schatz, “CloudBurst: highly sensitive read mapping with
MapReduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[17] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to
the human genome,” Genome Biology, vol. 10, no. 3, article R25,
2009.

[18] C. Rapier and B. Bennett, “High speed bulk data transfer
using the SSH protocol,” in Proceedings of the 15th ACM Mardi
Gras Conference: From Lightweight Mash-Ups to Lambda grids:
Understanding the Spectrum of Distributed Computing Require-
ments, Applications, Tools, Infrastructures, Interoperability, and
the Incremental Adoption of Key Capabilities (MG ’08), vol. 11,
pp. 1–11, ACM.

[19] T. Oinn, M. Addis, J. Ferris et al., “Taverna: a tool for
the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[20] D. Hull, K. Wolstencroft, R. Stevens et al., “Taverna: a tool
for building and running workflows of services,” Nucleic Acids
Research, vol. 34, pp. W729–W732, 2006.

[21] B.Giardine, C. Riemer, R. C.Hardison et al., “Galaxy: a platform
for interactive large-scale genome analysis,” Genome Research,
vol. 15, no. 10, pp. 1451–1455, 2005.

[22] StarCluster, http://web.mit.edu/stardev/cluster/.
[23] Vappio, http://vappio.sf.net/.
[24] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko,

and J. Taylor, “Galaxy CloudMan: delivering cloud compute
clusters,” BMC Bioinformatics, vol. 11, supplement 12, article S4,
2010.

[25] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy:
a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life
sciences,” Genome Biology, no. 8, article R86, 2010.

[26] G. Graefe, “Query evaluation techniques for large databases,”
ACM Computing Surveys, vol. 25, no. 2, pp. 73–170, 1993.

[27] D. Logothetis, C. Trezzo, K. Webb, and K. Yocum, “In-situ
MapReduce for log processing,” in Proceedings of the USENIX
Conference on USENIX Annual Technical Conference (USENIX-
ATC’11), pp. 9–9, USENIX Association, 2011.

[28] N. Backman, K. Pattabiraman, and U. Cetintemel, “C-MR:
a continuous MapReduce processing model for low-latency
stream processing on multi-core architectures,” 2010.

[29] R. Kienzler, R. Bruggmann, A. Ranganathan, and N. Tatbul,
“Large-scale DNA sequence analysis in the cloud: a stream-
based approach,” in Proceedings of the Euro-Par VHPC Work-
shop, 2011.

[30] R. Kienzler, R. Bruggmann, A. Ranganathan, and N. Tatbul,
“Stream as you go: the case for incremental data access and
processing in the cloud,” in Proceedings of the ICDE DMC
Workshop, 2012.

[31] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow,
and M. Brudno, “SHRiMP: accurate mapping of short color-
space reads,” PLoS Computational Biology, vol. 5, no. 5, Article
ID e1000386, 2009.

[32] s3fs, “FUSE-based le system backed by Amazon S3,”
http://code.google.com/p/s3fs/.

[33] J. Dean and S. Ghemawat, “MapReduce: simplied data process-
ing on large clusters,” in Proceedings of the 6th Conference on
Symposium on Opearting Systems Design and Implementation
(OSDI ’04), vol. 6, pp. 10–10, USENIX Association, 2004.

[34] B. Linke, R. Giegerich, and A. Goesmann, “Conveyor: a work-
flow engine for bioinformatic analyses,” Bioinformatics, vol. 27,
no. 7, Article ID btr040, pp. 903–911, 2011.

[35] B. Ludäscher, I. Altintas, C. Berkley et al., “Scientific workflow
management and theKepler system,”Concurrency Computation
Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[36] I. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid
workflow in Triana,” Journal of Grid Computing, vol. 3, no. 3-4,
pp. 153–169, 2005.

[37] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana
work ow environment: architecture and applications,” inWork-
flows for e-Science, pp. 320–339, Springer, New York, NY, USA,
2007.

[38] E. Deelman, G. Singh, M. H. Su et al., “Pegasus: a framework
for mapping complex scientific workflows onto distributed

http://aws.amazon.com/
http://www.microsoft.com/windowsazure/
http://www.ibm.com/cloud-computing/
http://www.ibm.com/cloud-computing/
http://www.rackspace.com/
http://magellan.alcf.anl.gov/
http://diagcomputing.org/
http://diagcomputing.org/
http://web.mit.edu/stardev/cluster/
http://vappio.sf.net/
http://code.google.com/p/s3fs/

16 BioMed Research International

systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237,
2005.

[39] S. P. Shah, D. Y. M. He, J. N. Sawkins et al., “Pegasys: software
for executing and integrating analyses of biological sequences,”
BMC Bioinformatics, vol. 5, article 40, 2004.

[40] P. Rice, L. Longden, and A. Bleasby, “EMBOSS: the european
molecular biology open software suite,” Trends in Genetics, vol.
16, no. 6, pp. 276–277, 2000.

[41] H. Li, B. Handsaker, A. Wysoker et al., “The Sequence Align-
ment/Map format and SAMtools,” Bioinformatics, vol. 25, no.
16, pp. 2078–2079, 2009.

[42] FASTX-Toolkit, http://hannonlab.cshl.edu/fastx toolkit/.
[43] S. F. Altschul,W. Gish,W.Miller, E.W.Myers, and D. J. Lipman,

“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[44] S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped
BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Research, vol. 25, no. 17, pp.
3389–3402, 1997.

[45] Z. Zhang, S. Schwartz, L.Wagner, andW.Miller, “A greedy algo-
rithm for aligning DNA sequences,” Journal of Computational
Biology, vol. 7, no. 1-2, pp. 203–214, 2000.

[46] M. Eriksen, “Trickle: a userland bandwidth shaper for Unix-like
systems,” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference (ATEC ’05), pp. 43–43, 2005.

http://hannonlab.cshl.edu/fastx_toolkit/

